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I. INTRODUCTION 

In recent years, the subject of subdivision gained popularity 

due to some new applications, such as 3D computer graphics, 

and due to close relation of subdivision analysis to wavelet 

analysis. Subdivision algorithms are most suitable for 

computer applications; they are simple to apprehend, easy to 

implement, highly flexible and very attractive to the users 

and researchers. In free form surface design applications, 

such as in the 3D animation industry, subdivision methods 

are already in extensive use, and the next venture is to 

introduce these methods to more conservative and demanding 

to the world of geometric modeling in the industry. 
 

Rham [1] and Chaikin [2] are regarded as the pioneers in the 

field of subdivision. Although they developed the corner 

cutting schemes, but important steps in the sub-division 

schemes have been made in the last two decades, and the 

subject expanded in new directions due to various 

generalizations and applications. The idea of families of 

subdivision schemes of higher arity is relatively new. Based 

on wavelet theory, Lian [2] introduced 2m-point a-ary for any 

a ≥ 2 and (2m + 1)-point a-ary for any odd a ≥ 3 interpolatory 

subdivision schemes for curve design. These schemes include 

the extended family of the classical 4- and 6-point [3] and the 

family of the 3- and 5-point a-ary interpolatory schemes [4]. 

Zheng et al. [5] investigated ternary interpo-latory schemes 

with an odd number of control points, namely, (2n − 1)-point 

ternary interpolatory subdivision schemes. They also 

investigated ternary even symmetric p-ary [6] and 2n-point 

[7] approximating subdivision schemes. Mustafa and Najma 

[8] presented general formulae for the mask of (2b + 4)-point 

n-ary approximating as well as interpolating subdivision 

schemes for any integers b ≥ 0 and n ≥ 2. These formulae 

corresponding to the mask not only generalize and unify 

several well-known schemes but also provide the mask of 

higher arity schemes. Mustafa et al. [9] presented a general 

algorithm to generate a new class of binary approximating 

subdivision schemes and also given derivation of some 

family members. 

For the analysis of binary, ternary and quaternary schemes, 

we may refer to [10], [11] and [12]. Analysis of higher arity 

schemes can be performed in a similar fashion. Main 

objective of the current paper is to introduce  -point a-ary 

non-parametric as well as parametric approximating 

subdivision schemes for curve design for any integers; a ≥ 2, 

which unifies all the approximating subdivision schemes. 

This subdivision also provides variety of even-point and odd-

point even-ary and odd-ary approximating parametric and 

non-parametric schemes generated by an explicit formulae in 

a single platform with high continuity than existing schemes 

generated by an explicit formulae. 

2 Analysis of the general a-ary -point 

approximating scheme. 
A general compact form of univariate a-ary subdivision  

scheme S which maps a polygon { }k k

i if f  Z
to a refined 

polygon 
1 1{ }k k

i if f 

 Z
is defined by 

                           
    ∑        
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where the set = { : }ia iZ of coefficients is called the mask 

at k-th level of refinement. A necessary condition for the 

uniform convergence of subdivision scheme (2.1) is that 
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A subdivision scheme is uniformly convergent if for any 

initial data f 
0
 = {fi

0
 : i ∈ Z }, there exists a continuous 

function f such that for any closed interval I ⊂ R, it satisfies 
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Introducing a symbol called Laurent polynomial  
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of the mask α= { αi : i ∈ Z } which play an efficient role to 

analyze the convergence and smoothness of subdivision 

scheme. From (2.2) and (2.3) the Laurent polynomial of 

convergent subdivision scheme satisfies. 

  
4 /( ) 0.ih ae   (0, ) (1)h Z a and a           

(2.4) 

This condition guarantees the existence of a related 

subdivision scheme for the divided differences of the original 

control points and the existence of an associated Laurent 

polynomial 
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The subdivision scheme S1 with Laurent polynomial 
(1) ( )z

, is related to the scheme S with Laurent polynomial  (z) by 

the following theorem. 

Theorem 2.1. [11] Let S denote a subdivision scheme with 

Laurent polynomial  (z) satisfying (2.4). Then there exists a 

subdivision scheme S1 with the property. 

 
1

1

k kf S f     

where 0k kf S f  and 
1{( ) ( ); }k k k k k

i i if f a f f i     Z . 

Furthermore, S is a uniformly convergent if and only if 1

1
S

a
 

converges uniformly to zero function for all initial data 
0f , 

in the sense that 

0

1

1
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k
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The above theorem indicates that for any given scheme S, 

with the mask  satisfying (2.2), we can prove the uniform 

convergence of S by deriving the mask of  
1

1
S

a
 and 

computing ‖(
 

 
  )

 

‖
 

  for 1,2,3........, ,i L  where L is 

the first integer for which ‖(
 

 
  )

 

‖
 

 < 1. If such an L 

exists, then S coverage’s uniformly. Since there are   rules 

for computing the values at the next refinement level, so we 

define the norm 
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and 
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2.1 Family of    -point a-ary approximating 

subdivision schemes 

In this section, we are introducing family of   -point a-ary 

approximating subdivision schemes for curve design for any 

integer; a ≥ 2. Which is the extension of “B-spline”. We have 

proved this family by using Chaikin [1], Hassan and Dodgson 

[11]. The Chaikin’s algorithm for curve design is given by 
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About twenty seven years later, it was extended to the 3-point 

scheme by Hassan and Dodgson and is given by 
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The Laurent polynomials of (2.9) and (2.10) are  

 

 

2
2

2 1 1

2 0

3
2

2 2 2

3 0

1 1
( )

4 1

1 1
( )

16 1

i

i i

i

i i

z
P z z

z

z
P z z

z





  
   

  


  
  

 

 

If “ a ” represents arity then by generalizing, we get 

     (2.11)    

where integers   ,a ≥ 2. From the coefficients of Laurent 

polynomial (2.11), we get the mask  
a

  of family of -point 

a-ary approximating subdivision schemes for curve design 

for any integer , a ≥ 2. 

Remark 2.1  

• For   = 2, a = 2, 3, 4, 5, 6 in (2.11), we get the mask of the 

following 2-point binary, ternary, quaternary, quinary and 

hexnary schemes, respectively, 

   (2.12)  

 For 3  , 2,3,4,5,6a   in (2.11) we get the mask 

of the following 3-point binary, ternary, quaternary, 

quinary and hexnary schemes, respectively, 
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(2.13) 

 For 4  , 2,3,4,5,6a   in (2.11) we get the mask 

of the following 4-point binary, ternary, quaternary, 

quinary and hexnary schemes, respectively, 
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(2.14)     

By adjusting the shape parameter in eq (2.11), we get  -
point a-ary parametric approximating subdivision scheme 

(2.15) 

and 
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From the coefficients of Laurent polynomial (2.15) and 

(2.16), we get the mask 
a

  of family of   -point a-ary 

parametric approximating subdivision schemes for curve 

design for any integer  , a ≥ 2. 

Remark 2.2 

 For    = 2, a = 2, 3, 4 in (2.15) and (2.16), we get the 

mask of following 2-point binary, ternary and quaternary 

schemes respectively. 
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 For = 3, a = 2, 3, 4 in (2.15) and (2.16), we get the 
mask of following 3-point binary, ternary and quaternary 
schemes respectively 
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 For  = 4, a = 2, 3, 4 in (2.15) and (2.16), we get the 
mask of the following 4-point binary, ternary and 
quaternary schemes respectively, 
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(2.19) 

 For  =5, a =2, 3, 4 in (2.15) and (2.16), we get the 

mask of the following 4-points binary, ternary and 

quaternary schemes respectively, 
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For  = 6, a = 2, 3, 4 in (2.15) and (2.16), we get the mask of 
the following 6-point binary, ternary and quaternary schemes 
respectively 
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(2.21) 
Table1: Different results of binary schemes 

Scheme  Continuity  Support   Error Bounds 

2-point binary  C1 3 0.025000 

3-point binary  C3 5 0.075000 

4- point binary C5 7 0.125000 

5- point binary C7 9 0.175000 

6- point binary C9 11 0.225000 

 

3. RESULTS AND DISCUSSIONS 
In this section, we compare the different properties of the 

existing schemes as well as the proposed  -point a-ary 

schemes generated by explicit formulae (2.15) and (2.16). 
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Table 2: Different results of ternary schemes 

Scheme 

Highest 

continuity Support size 

Error 

bounds 

    

2-point ternary C1 2.5 0.008333 

3-point ternary C2 4.0 0.033333 

4-point ternary C4 5.5 0.058333 

5-point ternary C5 7.0 0.083333 

6-point ternary C7 8.5 0.108333 

 

Table 3: Different results of quaternary schemes 

Scheme 

Highest 

continuity Support size Error bounds 

    

2-point 

quaternary 

C1 

2.3333 0.004167 

3-point 

quaternary 

C2 

3.6667 0.020833 

4-point 

quaternary 

C3 

5.0000 0.037500 

5-point 

quaternary 

C5 

6.3333 0.054166 

6-point 

quaternary 

C6 

7.6667 0.070832 

 
Table 4: Comparison: 2m-point and (2m + 1)-point a-ary 

interpolating schemes of Jian-ao-Lian [2]: 

Schemes Cn 
Schemes Cn 

4-point binary C1 4-point ternary C1 

6-point binary C2 6-point ternary C2 

8-point binary C2 8-point ternary C2 

    

3-point ternary C1 3-point quinary C0 

5-point ternary C1 5-point quinary C0 

7-point ternary C2 7-point quinary C1 

 
Table 5: Comparison: (2b + 4)-point a-ary approximating and 

interpolating schemes of Mustafa and Najma [8]: 

Approximating 

schemes Cn 

Interpolating 

schemes Cn 

4-point binary C5 4-point binary C1 

6-point binary C5 
6-point binary C2 

    

4-point ternary C2 
4-point ternary C2 

6-point ternary C4 
6-point ternary C2 

 
             (a)      (b)            (c) 
Figure 1: (a), (b) and (c) represent the continuity,  support size 

and error bounds of  -point a-ary schemes, respectively. 

 
In Table 1-3 and Fig. 1, we discussed the continuity, support 

size and error bounds of the generalized family of  -point a-

ary parametric approximating subdivision schemes (2.16). 

We note that continuity of the binary schemes is higher than 

ternary and quaternary schemes and it increases twice as the 

number of point increase by one. Continuity of the ternary 

schemes is greater than the continuity of the quaternary 

schemes. Here we see that support size and error bounds of 

the binary schemes are higher than ternary and quaternary 

schemes. It means like continuity, support size and error 

bounds of higher arity schemes generated by (2.16) are also 

less than the support size and error bounds of lower arity 

schemes. In Table 4, we calculated the continuity of already 

existing interpolating schemes introduced by Jian-ao-Lian 

[2]. Here we see that continuity of lower arity schemes is 

greater then higher arity schemes. In Table 5, we discussed 

the continuity of already existing approximating and 

interpolating schemes introduced by Mustafa and Najma [8]. 

Here we see that continuity of the binary schemes are higher 

than or equal to the ternary schemes. It is clear from Tables 

1-5 that continuity of the proposed schemes is higher than 

existing schemes of [2, 8]. 

 

3.1 Special cases 
1. Subdivision schemes generated by B-splines are special 

cases of our family of subdivision schemes (2.15). From the 

mask 
2 2

2 3,   and 
2

4  which are defined by (2.17)-(2.21), 

we see that binary B-spline are also special cases of the 

schemes generated by (2.11). 

2. By setting 1u = 1/27, 1/72 and 1/72+   in (2.18), we get 

Hassan and Dodgson [11] 3-point ternary scheme, Siddiqi 

and Rehan 3-point ternary non-parametric and parametric 

schemes [16] respectively. 

3. By setting 1u = 1/31104; 2u  = 76/31104 in (2.19), we 

have mask of Siddiqi and Ahmad 5-point scheme [15]. 

By taking {a = 2;  = 2}, {a = 3;  = 3} and {a = 4;  = 4} 

in the mask generated by (2.17), (2.18) and (2.19) we get 

Chaikin scheme [1], Hassan and Dodgson [11] and Ko [13] 

respectively. 
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3.2 CONCLUSION 
We offered an explicit general formula, which generates the 

mask of all approximating subdivision schemes. We have 

also studied their continuity, support size, and obtained error 

bounds for them. It is observed that the continuity, support 

size and error bounds have increased by the increment in the 

complexity (number of point involved to insert new points) of 

the schemes while they have decreased by the increment in 

arity of the schemes. Moreover, schemes introduce by 

Chaikin [1], Hassan and Dodgson [11], Siddiqi and Rehan 

[15, 16] and Kowan [13] are special cases of our scheme. 

Continuity of proposed parametric schemes is better than the 

existing a-ary schemes [2, 8]. We concluded that by 

increasing arity, there is reduction in the continuity, support 

size, error bounds and computation cost of the subdivision 

schemes. 
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